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Fuel Cell Operation (PEM ex.)

How a Fuel Cell Works
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qp Fuel Cell Operating Principle
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In most designs, fuel cell plate and cell assemblies
are stacked to produce a high voltage system of
many cells connected in series




Fuel Cell Types
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Fuel Cellsand Vehicles
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Fuel Cellsand Vehicles
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Fuel Cell Progress

* Power density has increased dramatically in the last
decade, e.g. for PEMFC: Ballard technology (figure
below) and GM with Stack 2000 (1.75 kW/liter!)
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Fuel Cellsand Vehicles

Damler Chrysler NECAR 1V Prototype

Comprassorfaspanderd



Fuel Cellsand Vehicles

| The gasoline processor and other

| auxiliary components take up about
W= half of the cargo spacein General

" Motors new S-10 fuel cell pickup

- truck, thefirst vehicle shown publicly
. with a processor that extracts
hydrogen from gasoline. Thetruck is
40% efficient (overall system); more
. than twice that of an IC vehicle.

University of California, Berkeley « Renewable and Appropriate Energy Laboratory « http://socrates.ber keley.edu/~r ael



Fuel Cellsand Vehicles

Toyota RAV-4 FCV Prototype




Fuel Cellsand Vehicles

Vehicle Lifecycle, Infrastructure, and Emission Costs:
Year 2026 - High Prod. Volume Central Case (1997¢/mi)
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Fuel Cellsand Vehicles

e But Not Just Light-Duty Vehicles
o Lotsof Activity Around Fuel Cell Buses

o Fuel Cell APUsfor Heavy-Duty Trucks
— UCD/Ballard/Freightliner Demo

 Marine Applications
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Fuel Cellsand Vehicles

e Key Issues
— Not just stacks, but systems!

« Balance of plant/auxiliary system development and
refinement

« WTM, optimized air compressors, startup issues, etc
— Refueling infrastructure for hydrogen
— Cost, cost, cost (FC system target of $40-50/kW!)
— Durability, durability, durability (~4,000 hours)

University of California, Berkeley « Renewable and Appropriate Energy Laboratory « http://socrates.ber keley.edu/~r ael



Stationary Fuel Cells

o Why Stationary Fuel Cells?
— Cleaner and more efficient than most DG options
— Quiet operation
— Some types offer high-grade waste-heat
— Highly reliability/availability(?)
— Modularity should lend itself to cost reduction (many
repeat components)

University of California, Berkeley « Renewable and Appropriate Energy Laboratory « http://socrates.ber keley.edu/~r ael



Stationary Fuel Cells

o Key Industry Players
— PAFC: United Technologies (formerly IFC)

e ~200 200-kW units sold, mostly in U.S. and many under
DoD buydown program ("$4K/kW - $1K/kW)

— PEM: Ballard, United Technologies, Plug Power

* Intense activity and lots of players, new Ballard/Coleman
1.2 KW unit (about $6K/kW)

— SOFC: Siemens - Westinghouse
» Yearsof development but still problems with cell to module
scale-up? (seals and materials)

— MCFC: Fuel Ceéll Energy
e Commercial product, 60 MW in orders for 2003

University of California, Berkeley « Renewable and Appropriate Energy Laboratory « http://socrates.ber keley.edu/~r ael



Stationary Fuel Cells
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Stationary Fuel Cells

Plug Power Residential PEM FC Prototype
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Stationary Fuel Cells

o Key Issues

— Integration with Utility Grids

— Reasonable Standby/EXxit Fees

— Durability, durability, durability (~40,000
nours)

— Cost, cost, cost (FC system target of ~$700-
800/kW)
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H2E-Stations vs. H2 Stations

Service Station Scenario |: H, Station™
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H2E-Stations vs. H2 Stations

Service Station Scenarnio 2: H,E-Station
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MATLAB/S mulink Modéel
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Large CA Residential Loads
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Medium-Sized CA Office
Building Loads
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H2-E Station Analysis




H2-E Station Analysis

Costs and Revenues Included in the
Analysis

Costs and Revenues Not Included in the
Analysis

* Fuel cell system capital costs

 Natural gasreformer capital costs

* Capital costsfor FCV refueling
equipment, including H, compressor, H,
storage, and H,, dispensing pump

* Natural gasfuel costsfor electricity and
hydrogen production

* Fuel cell system annual maintenance
and periodic stack refurbishment

» Reformer maintenance

* Purchased electricity, including fixed
monthly charges, energy charges, and
demand charges

» Revenues from hydrogen salesto FCV's
» Avoided electricity costs due to self-
generation

* Avoided natural gas costs due to co-
generation of hot water with fuel cell
system waste heat

* Equipment installation costs

* Safety equipment costs

* Costs of any required construction
permits or regulatory permits

« Costs associated with any property that
isdevoted to FCV refueling

* Utility “standby charges’ for providing
backup for electricity self-generation

* Costs of any labor associated with
energy station operation or administration
* Federal, state, and local taxes on
corporate income, including tax credits for
equipment depreciation, etc.

* Revenues from government incentives
for fuel cell installation/operation or
hydrogen dispensing

University of California, Berkeley « Renewable and Appropriate Energy Laboratory « http://socrates.ber keley.edu/~r ael




H2-E Station Analysis

e TwoO Settings:
. Service Station w/25kw and 40 kW fuel cells and
5-75 vehicles/day
. Office Building w/50-250 kW fuel cellsand 10
vehicles/day
 Various economic assumptions, but future FC
costs (on the order of $500-1,000/kW)

University of California, Berkeley « Renewable and Appropriate Energy Laboratory « http://socrates.ber keley.edu/~r ael



Sample Results: H2-E Service Station
w/40 kW fuel cell
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Sample Results: H2-E Service Station
:“ w/40 kW fuel cell and “future high” cost
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Sample Results; H2-E Service Station
vS. H2 Service Station Designs
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Sample Results; H2-E Office Building
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H2E-Station Findings

» Theeconomics of supporting small numbers of FCV's, on the order
of 5-15 per day, are difficult and only under the most favorable
circumstances can fueling stations break even or turn asmall profit.

 However, the losses associated with supporting early FCVswith
hydrogen fueling can potentially be reduced by employing H,E-
Station designs.

e Theeconomics of “office building” H,E-Stations appear favorable
relative to “service station” H,E-Stations, once fuel cell and H,
equipment becomes mass produced and less expensive, and where
the economics of producing electricity and displacing grid
purchases are favorable.
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y‘\ H2E-Station Findings (cont’ d)
A’ -

* In caseswhere 50 to 75 FCVs per day are supported
In service station H,E-Station designs with a 40 kW
fuel cell and “future high” cost estimates, a 10%
ROI target can be achieved but only with hydrogen
sold at or near $20 per GJ.

o With lower natura gas prices than $6/GJ, the
prospects for economic sales of hydrogen at closer to
$15/GJ would brighten.

University of California, Berkeley « Renewable and Appropriate Energy Laboratory « http://socrates.ber keley.edu/~r ael



V ehicle-to-Grid Power
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V ehicle-to-Grid Power

e Huge Potential Resource

— Total shaft power of motor vehicles is ~14 times the electricity
generating capacity of U.S.
— Vehiclesare only in use for about 1 hour per day on average

— 13,140 GWh per year (~1.5 GW on average) per 100,000 FCVs,
assuming 30 kW per vehicle and 50% vehicle availability

University of California, Berkeley « Renewable and Appropriate Energy Laboratory « http://socrates.ber keley.edu/~r ael
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V ehicle-to-Grid Power

e Residential Setting
— Single hybrid or non-hybrid vehicle with small, off-
board natural gas SMR or ATR unit
— 6 PM to 8 AM availability, 300 days/year
— Local load (avg. 1.2 kW) plus net-metering scenarios
— Natural gas @ $4, $6, and $10 per MBTU
— Electricity prices of $0.10-0.15/kWh, plus TOU rates

University of California, Berkeley « Renewable and Appropriate Energy Laboratory « http://socrates.ber keley.edu/~r ael



V ehicle-to-Grid Power

e Commercia Setting -- Office Building
— Upto 10 FCVswith alarger industrial grade SMR unit
— 8 AM to 6 PM availability, 250 days per year
— Building load from ~30 to ~300 kW

— $7-12/kW demand charge and $0.05-0.08/kWh
electricity, plus TOU rates

— Natural gas @ $3, $4, and $6 per MBTU

University of California, Berkeley « Renewable and Appropriate Energy Laboratory « http://socrates.ber keley.edu/~r ael
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V ehicle-to-Grid Power

Residential Building Results
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FCV-to-Grid Findings

« FCVsare Promising as DG Resources, but Several
|mportant |ssues Must be Resolved

 Usein Resdential Settings Will Benefits From Net
Metering or Community-Based System

o Usein Commercial Settingsis Attractive Due to Potential
for Demand Reduction, Use During Period of Grid Peak
(3-6pm), and Accessto Lower Cost Natural Gas

e Research is Ongoing to Further Understand Key
Sensitivities and Optimal Settings/Strategies
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New UCB DER Center: CIDER

>
&
’ \

« CIDER Han:
— Initial Launch in November 2002, Full Operations by June 2003

— Five man areas.
1) the economics of DER/CHP technologies

o 2) the air pollutant and GHG emissions impacts of
DER/CHP technologies

» 3) renewable DG systems based on wind turbines, solar
photovoltaics (PV), biomass, small hydro, and tidal
power (RAEL, http://socrates.berkeley.edu/~rael);

* 4) electricity demand-response technol ogies/economics

» 5) hydrogen as afuel/energy carrier for DER
technologies

— Office at 2105 Bancroft Way, Suite 300

University of California, Berkeley « Renewable and Appropriate Energy Laboratory « http://socrates.ber keley.edu/~r ael



